Erratum: Differences in Ribosome Binding and Sarcin/Ricin Loop Depurination by Shiga and Ricin Holotoxins. Toxins 2017, 9, 133
نویسنده
چکیده
We wish to make the following correction to the published paper [1].[...].
منابع مشابه
Differences in Ribosome Binding and Sarcin/Ricin Loop Depurination by Shiga and Ricin Holotoxins
Both ricin and Shiga holotoxins display no ribosomal activity in their native forms and need to be activated to inhibit translation in a cell-free translation inhibition assay. This is because the ribosome binding site of the ricin A chain (RTA) is blocked by the B subunit in ricin holotoxin. However, it is not clear why Shiga toxin 1 (Stx1) or Shiga toxin 2 (Stx2) holotoxin is not active in a ...
متن کاملDevelopment of a quantitative RT-PCR assay to examine the kinetics of ribosome depurination by ribosome inactivating proteins using Saccharomyces cerevisiae as a model.
Ricin produced by the castor bean plant and Shiga toxins produced by pathogenic Escherichia coli (STEC) and Shigella dysenteriae are type II ribosome inactivating proteins (RIPs), containing an enzymatically active A subunit that inhibits protein synthesis by removing an adenine from the α-sarcin/ricin loop (SRL) of the 28S rRNA. There are currently no known antidotes to Shiga toxin or ricin, a...
متن کاملPokeweed antiviral protein depurinates the sarcin/ricin loop of the rRNA prior to binding of aminoacyl-tRNA to the ribosomal A-site.
Ribosome-inactivating proteins, such as the pokeweed antiviral protein (PAP), inhibit translation by depurinating the conserved sarcin/ricin loop of the large ribosomal RNA. Depurinated ribosomes are unable to bind elongation factor 2, and, thus, the translocation step of the elongation cycle is inhibited. Though the consequences of depurination are well characterized, the ribosome conformation...
متن کاملA ribosome-inactivating protein in a Drosophila defensive symbiont.
Vertically transmitted symbionts that protect their hosts against parasites and pathogens are well known from insects, yet the underlying mechanisms of symbiont-mediated defense are largely unclear. A striking example of an ecologically important defensive symbiosis involves the woodland fly Drosophila neotestacea, which is protected by the bacterial endosymbiont Spiroplasma when parasitized by...
متن کاملGenerality of toxins in defensive symbiosis: Ribosome-inactivating proteins and defense against parasitic wasps in Drosophila
While it has become increasingly clear that multicellular organisms often harbor microbial symbionts that protect their hosts against natural enemies, the mechanistic underpinnings underlying most defensive symbioses are largely unknown. Spiroplasma bacteria are widespread associates of terrestrial arthropods, and include strains that protect diverse Drosophila flies against parasitic wasps and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2018